GENERAL INFORMATION

POWER-BOLT+ (PB+)

Heavy Duty Sleeve Anchor

PRODUCT DESCRIPTION

The Power-Bolt+ (PB+) anchor is a torque controlled, heavy duty sleeve style anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete and sand-lightweight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip. The PB+ has a low profile finished hex head.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments and tension zone applications
- Interior applications / low level corrosion environment
- Heavy duty applications

FEATURES AND BENEFITS

- $\ + \ {\rm Consistent} \ {\rm performance}$ in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + High shear load capacity

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3260 for cracked and uncracked concrete 1/2" and 5/8" diameters (3/4" pending)
- Code compliant with 2012 IBC, 2012 IRC, 2009 IBC, 2009 IRC, 2006 IBC, and 2006, IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 (including ASTM E 488) for use in structural concrete under the design provisions of ACI 318 (Strength Design method using Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors), 1/2" and 5/8" diameters. (3/4" pending)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post Installed Concrete Anchors Expansion anchors shall be Power-Bolt+ (PB+) as supplied by Powers Fasteners, Inc., Brewster, NY. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information1
Material Specifications2
Installation Instructions2
Installation Specifications3
Reference Performance Data4
Allowable Stress Design (ASD) Performance Data5
Allowable Stress Design (ASD) Design Criteria6
Strength Design Information7
Ordering Information11

POWER-BOLT+ (PB+) ASSEMBLY

HEAD STYLES

• Finished Hex Head

ANCHOR MATERIALS

• Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

ANCHOR SIZE RANGE (TYP.)

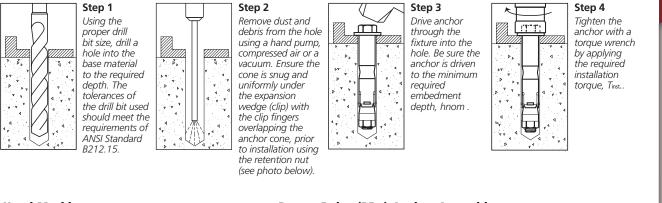
• 1/4" diameter through 3/4" diameter

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete

This Product Available In

Powers Design Assist Real Time Anchor Design Software www.powersdesignassist.com



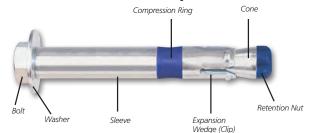
MATERIAL SPECIFICATIONS

Anchor component	Specification
Bolt	Medium carbon steel (Grade 8 equivalent)
Washer	Conforms to ASTM F844
Cone	AISI C1035-C1040
Expansion Clip	AISI C1045-C1050
Metal Sleeve	Medium carbon steel tubing (seamless)
Compression Ring & Retainer Nut	Engineered plastic
Plating	Zinc plating according to ASTM B 633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition.

INSTALLATION INSTRUCTIONS

Installation Instructions for Power-Bolt+ (PB+) Anchor

Head Marking



Legend 'PB+' Symbol = Power-Bolt+ Strength Design

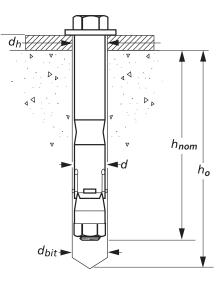
(see ordering information)

= Length Identification Mark

Power-Bolt+ (PB+) Anchor Assembly

Length Identification

Mark	A	В	с	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"	11"
	2					4-1/2"	5"	5-1/2"	6"	6-1/2"	/"	/-1/2"	8"	8-1/2"	9"	9-1/2		10"


INSTALLATION SPECIFICATIONS

Power-Bolt+ (PB+) Anchor Installation Specifications

				Nomin	al Anchor Diame	ter (in.)	
Anchor Property/Setting Information	Notation	Units	1/4	3/8	1/2	5/8 0.625 (15.9) 7/16 (11.1) 5/8 ANSI 11/16 (17) 2-3/4 (70) 3-1/4 (83) 6-1/2 (165) 4-1/2 (114) 6 (152) 60 (81) 3/4	3/4
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)		0.750 (19.1)
Internal Bolt Diameter (UNC)	-	in. (mm)	#8 (4)	1/4 (6.4)	3/8 (9.5)		9/16 (14.3)
Nominal drill bit diameter	d _{bit}	in. (mm)	1/4 ANSI	3/8 ANSI	1/2 ANSI		3/4 ANSI
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (8)	7/16 (11)	9/16 (14)		13/16 (21)
Minimum nominal embedment depth	hnom	in. (mm)	1-1/4 (32)	2 (51)	2-1/2 (64)		3 (76.2)
Minimum hole depth	h₀	in. (mm)	1-1/2 (38)	2-1/4 (57)	3 (76)		3-5/8 (92)
Minimum member thickness	h _{min}	in. (mm)	3-1/2 (89)	4-1/2 (114)	5 (127)		7 (178)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	2-3/4 (70)	3-1/4 (83)		6 (152)
Minimum spacing distance	S _{min}	in. (mm)	2 (51)	3-1/2 (89)	4-1/2 (114)		6 (152)
Installation torque	T _{inst}	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)		110 (149)
Torque wrench/socket size	-	in.	3/8	1/2	5/8	3/4	15/16
Bolt Head Height	-	in. (mm)	1/8 (3)	13/64 (5)	9/32 (7)	5/16 (8)	3/8 (10)

Power-Bolt+ (PB+) Anchor Detail

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Power-Bolt+ (PB+) in Normal-Weight Concrete¹

	Minimum				Minimu	m Concrete C	ompressive S	trength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Diameter d in.	Depth in. (mm) hnom	Tension lbs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-1/4	1,245	1,670	1,260	1,670	1,290	1,670	1,345	1,670	1,397	1,670
	(32)	(5.5)	(7.4)	(5.6)	(7.4)	(5.7)	(7.4)	(6.0)	(7.4)	(6.2)	(7.4)
1/4	1-3/4	1,740	1,670	1,905	1,670	1,945	1,670	1,945	1,670	1,945	1,670
	(44)	(7.7)	(7.4)	(8.5)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)
3/8	2	2,740	3,990	3,000	3,990	3,465	3,990	4,140	3,990	4,425	3,990
	(51)	(12.2)	(17.7)	(13.3)	(17.7)	(15.4)	(17.7)	(18.4)	(17.7)	(19.7)	(17.7)
5/0	2-3/4	4,130	3,990	4,425	3,990	4,425	3,990	4,425	3,990	4,425	3,990
	(70)	(18.4)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)
	2-1/2	3,880	7,420	4,250	8,030	4,905	8,030	5,150	8,030	5,518	8,030
	(64)	(17.3)	(33.0)	(18.9)	(35.7)	(21.8)	(35.7)	(22.9)	(35.7)	(24.5)	(35.7)
1/2	3	5,190	8,030	5,685	8,030	6,560	8,030	7,985	8,030	9,065	8,030
	(76)	(23.1)	(35.7)	(25.3)	(35.7)	(29.2)	(35.7)	(35.5)	(35.7)	(40.3)	(35.7)
	3-1/4	7,120	8,030	7,660	8,030	8,645	8,030	9,400	8,030	10,835	8,030
	(83)	(31.7)	(35.7)	(34.1)	(35.7)	(38.5)	(35.7)	(41.8)	(35.7)	(48.2)	(35.7)
	2-3/4	4,745	9,975	5,195	10,930	6,000	12,620	6,845	13,155	7,200	13,155
	(70)	(21.1)	(44.4)	(23.1)	(48.6)	(26.7)	(56.1)	(30.4)	(58.5)	(32.0)	(58.5)
5/8	3-1/2	6,995	9,975	7,660	10,930	8,845	12,620	11,325	13,155	12,900	13,155
	(89)	(31.1)	(44.4)	(34.1)	(48.6)	(39.3)	(56.1)	(50.4)	(58.5)	(57.4)	(58.5)
	3-3/4	8,710	12,015	9,545	14,320	11,020	16,535	12,820	18,250	14,800	18,250
	(95)	(38.7)	(53.4)	(42.5)	(63.7)	(49.0)	(73.6)	(57.0)	(81.2)	(65.8)	(81.2)
	3	5,655	10,950	6,195	11,995	7,155	13,850	8,385	18,510	9,685	21,370
	(76)	(25.2)	(48.7)	(27.6)	(53.4)	(31.8)	(61.6)	(37.3)	(82.3)	(43.1)	(95.1)
3/4	4-3/8	10,870	18,635	11,910	20,415	13,750	23,575	14,705	23,575	16,975	23,575
	(111)	(48.4)	(82.9)	(53.0)	(90.8)	(61.2)	(104.9)	(65.4)	(104.9)	(75.5)	(104.9)
	7	18,145	24,290	19,880	24,290	22,955	24,290	28,445	24,290	29,863	24,290
	(178)	(80.7)	(108.0)	(88.4)	(108.0)	(102.1)	(108.0)	(126.5)	(108.0)	(132.8)	(108.0)

ALLOWABLE STRESS DESIGN (ASD) PERFORMANCE DATA

Allowable Load Capacities for Power-Bolt+ (PB+) in Normal-Weight Concrete^{1,2,3}

Nominal	Minimum Nominal				Minimu	m Concrete C	Compressive S	trength			
Anchor Diameter	Embed. Depth	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
d in.	in. (mm) hnom	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-1/4	310	420	315	420	325	420	335	420	350	420
	(32)	(1.4)	(1.9)	(1.4)	(1.9)	(1.4)	(1.9)	(1.5)	(1.9)	(1.6)	(1.9)
1/4	1-3/4	435	420	475	420	485	420	485	420	485	420
	(44)	(1.9)	(1.9)	(2.1)	(1.9)	(2.2)	(1.9)	(2.2)	(1.9)	(2.2)	(1.9)
2/0	2	685	1,000	750	1,000	865	1,000	1,035	1,000	1,105	1,000
	(51)	(3.0)	(4.4)	(3.3)	(4.4)	(3.8)	(4.4)	(4.6)	(4.4)	(4.9)	(4.4)
3/8	2-3/4	1,035	1,000	1,105	1,000	1,105	1,000	1,105	1,000	1,105	1,000
	(70)	(4.6)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)
	2-1/2	970	1,855	1,065	2,010	1,225	2,010	1,290	2,010	1,380	2,010
	(64)	(4.3)	(8.3)	(4.7)	(8.9)	(5.4)	(8.9)	(5.7)	(8.9)	(6.1)	(8.9)
1/2	3	1,300	2,010	1,420	2,010	1,640	2,010	1,995	2,010	2,265	2,010
	(76)	(5.8)	(8.9)	(6.3)	(8.9)	(7.3)	(8.9)	(8.9)	(8.9)	(10.1)	(8.9)
	3-1/4	1,780	2,010	1,915	2,010	2,160	2,010	2,350	2,010	2,710	2,010
	(83)	(7.9)	(8.9)	(8.5)	(8.9)	(9.6)	(8.9)	(10.5)	(8.9)	(12.1)	(8.9)
	2-3/4	1,185	2,495	1,300	2,735	1,500	3,155	1,710	3,290	1,800	3,290
	(70)	(5.3)	(11.1)	(5.8)	(12.2)	(6.7)	(14.0)	(7.6)	(14.6)	(8.0)	(14.6)
5/8	3-1/2	1,750	2,495	1,915	2,735	2,210	3,155	2,830	3,290	3,225	3,290
	(89)	(7.8)	(11.1)	(8.5)	(12.2)	(9.8)	(14.0)	(12.6)	(14.6)	(14.3)	(14.6)
	3-3/4	2,180	3,005	2,385	3,580	2,755	4,135	3,205	4,565	3,700	4,565
	(95)	(9.7)	(13.4)	(10.6)	(15.9)	(12.3)	(18.4)	(14.3)	(20.3)	(16.5)	(20.3)
	3	1,415	2,740	1,550	3,000	1,790	3,465	2,095	4,630	2,420	5,345
	(76)	(6.3)	(12.2)	(6.9)	(13.3)	(8.0)	(15.4)	(9.3)	(20.6)	(10.8)	(23.8)
3/4	4-3/8	2,720	4,660	2,980	5,105	3,440	5,895	3,675	5,895	4,245	5,895
	(111)	(12.1)	(20.7)	(13.3)	(22.7)	(15.3)	(26.2)	(16.3)	(26.2)	(18.9)	(26.2)
	7	4,535	6,075	4,970	6,075	5,740	6,075	7,110	6,075	7,465	6,075
	(178)	(20.2)	(27.0)	(22.1)	(27.0)	(25.5)	(27.0)	(31.6)	(27.0)	(33.2)	(27.0)

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the applications, such as life safety or overhead.

2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. 3.

ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERIA

Spacing Reduction Factors -Tension (F_{NS})

FASTENING INNOVATIONS

Spacing Real						2/4
Diameter (in)		1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacing	smin (in)	2	3-1/2	4-1/2	6	5
	2	0.78	-	-	-	-
	2-1/2	0.82	-	-	-	-
	3	0.87	-	-	-	-
	3-1/2	0.91	0.80	-	-	-
	4	0.96	0.83	-	-	-
	4-1/2	1.00	0.86	0.83	-	-
Spacing Distance (inches)	5	1.00	0.89	0.85	-	0.77
i)	5-1/2	1.00	0.92	0.88	-	0.79
ance	6	1.00	0.95	0.91	0.85	0.81
Dist	6-1/2	1.00	0.98	0.93	0.87	0.83
bu	7	1.00	1.00	0.96	0.90	0.85
baci	7-1/2	1.00	1.00	0.98	0.92	0.87
l v	8	1.00	1.00	1.00	0.95	0.89
	8-1/2	1.00	1.00	1.00	0.97	0.92
	9	1.00	1.00	1.00	1.00	0.94
	9-1/2	1.00	1.00	1.00	1.00	0.96
	10	1.00	1.00	1.00	1.00	0.98
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance R	Reduction	Factors-	Tension	(F _{NC})
-----------------	-----------	----------	---------	----------------------------

Luge Distain	te neude		10015	Tensie		
Diameter (in)		1/4	3/8	1/2	5/8	3/4
Nominal Embedm	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Edge Dist	ance c _{min} (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/2	0.56	-	-	-	-
	3	0.67	0.46	-	-	-
(s	3-1/4	0.72	0.50	0.41	-	-
Distance (inches)	3-1/2	0.78	0.54	0.44	-	-
e (in	4	0.89	0.62	0.50	-	-
anc	4-1/2	1.00	0.69	0.56	0.75	-
Dist	5	1.00	0.77	0.63	0.83	-
Edge	5-1/2	1.00	0.85	0.69	0.92	-
Щ	6	1.00	0.92	0.75	1.00	0.75
	6-1/2	1.00	1.00	0.81	1.00	0.81
	7	1.00	1.00	0.88	1.00	0.88
	7-1/2	1.00	1.00	0.94	1.00	0.94
	8	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors -Shear (Fvs)

Spacing near			Jiicui		= /0	
Diameter	(in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacin	ig s _{min} (in)	2	3-1/2	4-1/2	6	5
	2	0.86	-	-	-	-
	2-1/2	0.89	-	-	-	-
	3	0.92	-	-	-	-
	3-1/2	0.94	0.88	-	-	-
	4	0.97	0.90	-	-	-
	4-1/2	1.00	0.91	0.89	-	-
ches	5	1.00	0.93	0.91	-	0.84
(ju	5-1/2	1.00	0.95	0.93	-	0.86
ance	6	1.00	0.97	0.94	0.89	0.87
Dist	6-1/2	1.00	0.99	0.96	0.91	0.88
- bu	7	1.00	1.00	0.97	0.93	0.90
Spacing Distance (inches)	7-1/2	1.00	1.00	0.99	0.94	0.91
s	8	1.00	1.00	1.00	0.96	0.93
	8-1/2	1.00	1.00	1.00	0.98	0.94
	9	1.00	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	0.99
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors -Shear (Fvc)

Luge Distant											
Diameter	(in)	1/4	3/8	1/2	5/8	3/4					
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3					
Minimum Edge Dist	ance c _{min} (in)	1-3/4	2-3/4	3-1/4	4-1/2	6					
	1-3/4	0.39	-	-	-	-					
	2	0.44	-	-	-	-					
	2-1/2	0.56	-	-	-	-					
	3	0.67	0.44	-	-	-					
	3-1/4	0.72	0.48	0.41	-	-					
	3-1/2	0.78	0.52	0.44	-	-					
	4	0.89	0.59	0.51	-	-					
1es)	4-1/2	1.00	0.67	0.57	0.50	-					
(incl	5	1.00	0.74	0.63	0.56	-					
JCe	5-1/2	1.00	0.81	0.70	0.61	-					
Edge Distance (inches)	6	1.00	0.89	0.76	0.67	0.57					
e D	6-1/2	1.00	0.96	0.83	0.72	0.62					
Edg	7	1.00	1.00	0.89	0.78	0.67					
	7-1/2	1.00	1.00	0.95	0.83	0.71					
	8	1.00	1.00	1.00	0.89	0.76					
	8-1/2	1.00	1.00	1.00	0.94	0.81					
	9	1.00	1.00	1.00	1.00	0.86					
	9-1/2	1.00	1.00	1.00	1.00	0.90					
	10	1.00	1.00	1.00	1.00	0.95					
	10-1/2	1.00	1.00	1.00	1.00	1.00					

MECHANICAL ANCHORS

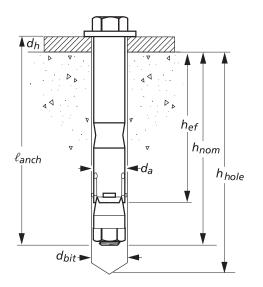
POWER-BOLT+ (PB+) Heavy Duty Sleeve Anchor

STRENGTH DESIGN INFORMATION

Power-Bolt+ (PB+) Anchor Installation Specifications¹

FASTENING INNOVATION

Anchor Dronorty/Cotting Information	Notation	Units		Norminal Anchor Diameter (in.))	
Anchor Property/Setting Information	Notation	Units	1/2	5/8	3	/4
Anchor outside diameter	da [do]³	in. (mm)	0.500 (12.7)	0.625 (15.9)	0.7 (19	750 9.1)
Internal bolt diameter (UNC)	-	in. (mm)	3/8 (9.5)	7/16 (11.1)	9/ (14	16 I.3)
Minimum diameter of hole clearance in fixture	dh	in. (mm)	9/16 (14.3)	11/16 (17.5)		
Nominal drill bit diameter	dbit	in.	1/2 ANSI	5/8 ANSI	3. Al	/4 VSI
Minimum nominal embedment depth	hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3 (1	
Effective embedment	h _{ef}	in. (mm)	2-5/8 (67)	3 (76)	3-1/2 (89)	
Minimum hole depth	h _{hole}	in. (mm)	3-3/4 (95)	4-1/4 (108)	5 (127)	
Minimum member thickness	h _{min}	in. (mm)	5 (127)	6-1/2 (165)	7 (178)	
Minimum overall anchor length ²	lanch	in. (mm)	3-1/2 (89)	4 (102)	5-1 (13	1/4 33)
Minimum edge distance	Cmin	in. (mm)	3-1/4 (83)	4-1/2 (114)	6 (152)	8 (203)
Minimum spacing distance	Smin	in. (mm)	4-1/2 (114)	6 (152)	6 (152)	5 (127)
Critical edge distance	Cac	in. (mm)	8 (203)	6 (152)		3)3)
Installation torque	T _{inst}	ftlbf. (N-m)	40 (54)	60 (81)	110 (149)	
Bolt Head Height	-	in. (mm)	1/4 (7.1)	5/16 (7.9)	3/8 (9.6)	
Torque wrench/socket size	-	in.	5/8	3/4	15	/16


For SI:1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and

fixture attachment. 3. The notation in brackets is for the 2006 IBC.

Power-Bolt+ (PB+) Anchor Detail

Anchor category

Nominal embedment depth

Minimum specified yield strength

Effective tensile stress area (threads)

Steel strength in tension

Minimum specified ultimate tensile strength⁹

Design Characteristic

Tension Design information for Power-Bolt+ (PB (for use with load combinations taken form AC

		Anchor in Con 18, Section 9.2)		S					
Notation	Units	Nominal Anchor Diameter							
Notation	Units	1/2	5/8	3/4					
1,2 or 3	-	1	1	1					
h _{nom}	in.	3-1/4	3-3/4	4-3/8					
	(mm)	(83)	(95)	(111)					
STEEL ST	RENGTH IN 1	TENSION ⁴							
fy	ksi	130	130	130					
	(N/mm²)	(896)	(896)	(896)					
f _{uta} 10	ksi	150	150	150					
	(N/mm²)	(1034)	(1034)	(1034)					
A _{se, N}	in²	0.0775	0.1063	0.1820					
[A _{se]} ¹¹	(mm²)	(50)	(68.6)	(116)					
N _{sa} ¹⁰	lb	9,685	13,285	27,300					
	(kN)	(43.1)	(59.1)	(121.4)					

Reduction factor for steel strength ³	ϕ	-		0.75				
CONCRETE BREAKOUT STRENGTH IN TENSION [®]								
Effective embedment	h _{ef}	in. (mm)	2.625 (67)	3.000 (76)	3.500 (89)			
Effectiveness factor for uncracked concrete	kucr	-	27	27	24			
Effectiveness factor for cracked concrete	ka	-	17	17	21			
Modification factor for cracked and uncracked concrete ^{5}	$\psi_{ ext{c,N}^{10}}$	-	1.0	1.0	1.0			
Critical edge distance (uncracked concrete)	Cac	in. (mm)	8 (203)	6 (152)	8 (203)			
Reduction factor for concrete breakout strength ⁴	ϕ	-	0.65 (Condition B)					
PULLOUT STRE	NGTH IN TE	NSION (NON	-SEISMIC APPLICATIONS) ⁸				
Characteristic pullout strength, uncracked concrete (2,500 $psi)^{\scriptscriptstyle 6}$	N _{p,uncr}	lb (kN)	Not Applicable ⁷	Not Applicable ⁷	Not Applicable ⁷			
Characteristic pullout strength, cracked concrete (2,500 psi)6	N _{p,cr}	lb (kN)	Not Applicable ⁷	Not Applicable ⁷	Not Applicable ⁷			
Reduction factor for pullout strength	ϕ	-	0.65 (Condition B)					
PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS [®]								
Characteristic pullout strength, seismic (2,500 psi)6	N _{eq} 9	lb (kN)	Not Applicable ⁷	Not Applicable ⁷	Not Applicable ⁷			
Reduction factor for pullout strength	ϕ	-		0.65 (Condition B)				

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.

2. Installation must comply with the manufacturer's published installation instructions.

3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4). The anchors are ductile steel elements as defined in ACI 318 D.1.

4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4) for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4) for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4 (ACI 318-08 and -05 D.4.5).

5. For all design cases use $\Psi_{cN} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cn}) or uncracked concrete (k_{uncr}) must be used.

6. For all design cases use $\Psi_{c,P} = 1.0$.

7. Pullout strength will not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in sand-lightweight concrete provided that Nb and Npn are multiplied by a factor of 0.60.

9. In accordance with ACI 318 D.5.1.2 and Eq. (D-3) the nominal steel strength in tension is calculated using a limited value of futa of 125 ksi.

10. For 2003 IBC, futa replaces fut; Nsa replaces Ns; $\Psi_{c,N}$ replaces Ψ_{3} ; and Np,eq replaces Np,seis.

11. The notation in brackets is for the 2006 IBC.

Heavy Duty Sleeve Anchor

Shear Design information for Power-Bolt+ (PB+) Anchor in Concrete (For use with load combinations taken form ACI 318, Section 9.2)¹²

ASTENING INNOVATION

•		-	-		ABL		
Design Characteristic Notation Units Nominal Anchor Diameter							
	Notation	Units	1/2	5/8	3/4		
Anchor category	1, 2 or 3	-	1	1	1		
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)		
	STEEL	. STRENGTH	IN SHEAR				
Minimum specified yield strength	fy	ksi (N/mm²)	130 (896)	130 (896)	130 (896)		
Minimum specified ultimate strength	f _{uta} 9	ksi (N/mm²)	150 (1034)	150 (1034)	150 (1034)		
Effective shear stress area	A _{se,v} [A _{se}] ¹⁰	in² (mm²)	0.1069 (69.0)	0.1452 (93.7)	0.2410 (153)		
Steel strength in shear ⁶	$V_{sa}{}^9$	lb (kN)	6,005 (26.7)	13,415 (59.7)	14,820 (65.9)		
Reduction factor for steel strength ³	ϕ	-	0.65				
	CONCRETE BR	EAKOUT ST	RENGTH IN SHEAR ⁷				
Load bearing length of anchor (h _{ef} or 8d _o , whichever is less)	le ⁹	in (mm)	2.625 (67)	3.000 (76)	3.500 (89)		
Nominal anchor diameter	da	in (mm)	0.500 (12.7)	0.625 (15.9)	0.750 (19.05)		
Reduction factor for concrete breakout ⁴	ϕ	-	0.70 (Condition B)				
	PRYOU	T STRENGTH	IN SHEAR ⁷				
Coefficient for pryout strength (1.0 for $h_{ef} < 2.5$ in., 2.0 for $h_{ef} \ge 2.5$ in.)	k _{cp}	-	2.0	2.0	2.0		
Effective embedment	h _{ef}	in (mm)	2.625 (675)	3.000 (76)	3.500 (89)		
Reduction factor for pryout strength ⁵	ϕ	-	0.70 (Condition B)				
STEEL	STRENGTH IN	SHEAR FOR	SEISMIC APPLICATIONS				
Steel strength in shear, seismic [®]	Vsa, eq ⁹	lb (kN)	4,565 (20.3)	7,425 (33.0)	14,820 (65.9)		
Reduction factor for steel strength in shear for seismic ³	ϕ	-		0.65			

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.

2. Installation must comply with the manufacturer's published installation instructions.

3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4). The anchors are ductile steel elements as defined in ACI 318 D.1.

4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4) for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4) for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3 (ACI 318-08 and -05 D.4.4). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4 (ACI 318-08 and -05 D.4.5).

5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC or ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ for pryout strength must be determined in accordance with ACI 318-11 D.4.4 (ACI 318-08 and -05 D.4.5), Condition B.

6. Tabulated values for steel strength in shear must be used for design. The tabulated values for the shear stress area are listed conservatively and the results for the steel strength will be more conservative when using equation D-29 in ACI 318-11 (ACI 318-08 and -05, Eq. D-20).

7. Anchors are permitted to be used in sand-lightweight concrete provided that Vb, Vp and Vp9 are multiplied by a factor of 0.60.

8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

9. For the 2003 IBC futa replaces f_{ut} ; V_{sa} replaces V_s ; ℓ_e replaces ℓ ; and V_{eq} replaces $V_{sa,seis}$.

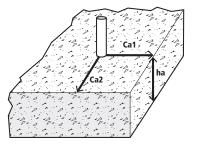
10. The notation in brackets is for the 2006 IBC.

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength Φ Nn and Φ Vn Calculated in accordance with ACI 318 Appendix D Tested to the International Building Code

Tension and Shear Design Strengths for Power-Bolt+ (PB+) in Cracked Concrete^{1,2,3,45,6}

		Minimum Concrete Compressive Strength										
Nominal Anchor	Nominal Embed.	f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f′c = 8,000 psi		
Diameter (in.)	h (in.)	$\Phi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	$\Phi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	$\Phi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	Φ Nn Tension (lbs.)	Φ Vn Shear (lbs.)	$\Phi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	
1/2	3-1/4	2,350	3,525	2,575	3,860	2,970	3,905	3,640	3,905	4,205	3,905	
5/8	3-3/4	2,870	3,310	3,145	3,625	3,630	4,190	4,450	5,130	5,135	5,920	
3/4	4-3/8	4,470	4,990	4,895	5,465	5,655	6,310	6,925	7,730	7,995	8,925	


Tension and Shear Design Strengths for Power-Bolt+ (PB+) in Uncracked Concrete^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength, f'c (psi)										
Nominal Anchor	Nominal Embed.			f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
Diameter (in.)	hnom (in.)	$\Phi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	$arPhi_{ m Nn}$ Tension (lbs.)	Φ Vn Shear (lbs.)	<i>⊕</i> Nn Tension (lbs.)	Φ Vn Shear (lbs.)	<i>⊕</i> Nn Tension (lbs.)	∕∕ Vn Shear (lbs.)	<i>⊕</i> Nn Tension (lbs.)	Φ Vn Shear (lbs.)	
1/2	3-1/4	3,730	3,905	4,090	3 ,905	4,720	3,905	5,780	3,905	6,675	3,905	
5/8	3-3/4	4,560	4,635	4,995	5,076	5,770	5,865	7,065	7,180	8,155	8,290	
3/4	4-3/8	5,105	6,985	5,595	7,655	6,460	8,835	7,910	9,410	9,135	9,410	
🔲 - Concrete	🗌 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls											

1- Tabular values are provided for illustration and are applicable for single anchors installed in normalweight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- Ca2 is greater than or equal to 1.5 times Ca1.

- 2- Calculations were performed according to ACI 318-11 Appendix D. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318 Section 9.2 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see ACI 318 Appendix D.

wers FASTENING INNOVATIONS

ORDERING INFORMATION

Power-Bolt+ (Carbon Steel Finished Hex Head)

Cat. No.	Anchor Size	Maximum Fixture Thickness	Box Qty.	Carton Qty.
6902SD	1/4" X 1-3/4"	1/2"	100	600
6906SD	1/4" X 3"	1-3/4″	100	600
6910SD	3/8" X 2-1/4"	1/4″	50	300
6913SD	3/8" X 3"	1"	50	300
6914SD	3/8" X 3-1/2"	1-1/2″	50	300
6916SD	3/8" X 4"	2"	50	300
6930SD	1/2" x 2-3/4"	1/4"	50	200
6932SD	1/2" x 3-1/2"	1/4"	50	200
6934SD	1/2" x 4-3/4"	1-1/2"	25	150
6936SD	1/2" x 5-3/4"	2-1/2"	25	150
6940SD	5/8" x 3"	1/4"	20	120
6942SD	5/8" x 4"	1/4"	15	90
6944SD	5/8" x 5"	1-1/4"	15	90
6945SD	5/8" x 6"	2-1/4"	15	90
6947SD	5/8" x 8-1/2"	4-3/4"	10	40
6950SD	3/4" x 3-1/4"	1/4"	15	90
6952SD	3/4" x 4-1/4"	1-1/4"	10	60
6954SD	3/4" x 5-1/4"	2-1/4"	10	60
6956SD	3/4" x 7-1/4"	4-1/4"	10	40
6958SD	3/4" x 8-1/4"	5-1/4"	10	40

The published size includes the diameter and the length which is measured from below the washer to the end of the anchor.

Installation Accessories

Cat. No.	Description	Box Qty
08466	Adjustable torque wrench with 1/2" square drive (25 to 250 ftlbs.)	1
08280	Hand pump / dust blower	1

ŧ	
C	